2008. 2. 11. 10:18
추천시스템 서버적용 애플리케이션 아이디어 netflix prize2008. 2. 11. 10:18
메뉴 에서 선택
1. 서버에서 어떤 데이터 베이스에 어떤 테이블, 어떤 칼럼에정보가 들어있는지 그 정보를 읽도록 한다.
2. 그 데이터를 기반으로 바이너리 데이터를 생성해 메모리에 올린다.
3. 메모리에 올린 데이터로 preprocessing data를 생성한다. (유사도 + 행렬 A)
-> 이 와중에 시각화를 시키는 것이 가능하다 - 유사도를 이용하여 영화의 군집화를 보여주는 것이다.
<이상의 작업은 하루에 한번 이용량이 적은 시간대에 행해질 것이다. UI버전 + CUI버전 동시에 제공. UI버전은 실행과 동시에 작업이 진행된다.)
... 시간 소요 ...
4. 이제 그 바이너리 데이터를 기반으로 항시 "추천"이 가능하다.
4-1. 추천의 방법은 예를 들면, 최신 영화 100개를 대상으로 맞춤평점순 정렬을 시킨다든지, 특정 장르, 특정 검색어를 통해 "검색"과 동시에 맞춤평점을 평가하는 방식이 가능하다.
4-2. 또는 랜덤하게 추출한 100개의 영화중 맞춤평점이 높은 영화를 추천해 줄 수 있다.
* 프로토 타입만 생성가능 => 전시회이지 공모전이 아니기 때문이다...
* 실험데이터를 자주 참조하자.
궁금증 ** 왜 weight의 합은 1이 아닐까??????????????