ensemble, 앙상블 netflix prize/기타2008. 3. 3. 17:17
인공지능 교재 664p에 매우 잘 나와있다.
"boosting" - 가장 흔한 방법
메뉴 에서 선택
1. 서버에서 어떤 데이터 베이스에 어떤 테이블, 어떤 칼럼에정보가 들어있는지 그 정보를 읽도록 한다.
2. 그 데이터를 기반으로 바이너리 데이터를 생성해 메모리에 올린다.
3. 메모리에 올린 데이터로 preprocessing data를 생성한다. (유사도 + 행렬 A)
-> 이 와중에 시각화를 시키는 것이 가능하다 - 유사도를 이용하여 영화의 군집화를 보여주는 것이다.
<이상의 작업은 하루에 한번 이용량이 적은 시간대에 행해질 것이다. UI버전 + CUI버전 동시에 제공. UI버전은 실행과 동시에 작업이 진행된다.)
... 시간 소요 ...
4. 이제 그 바이너리 데이터를 기반으로 항시 "추천"이 가능하다.
4-1. 추천의 방법은 예를 들면, 최신 영화 100개를 대상으로 맞춤평점순 정렬을 시킨다든지, 특정 장르, 특정 검색어를 통해 "검색"과 동시에 맞춤평점을 평가하는 방식이 가능하다.
4-2. 또는 랜덤하게 추출한 100개의 영화중 맞춤평점이 높은 영화를 추천해 줄 수 있다.
* 프로토 타입만 생성가능 => 전시회이지 공모전이 아니기 때문이다...
* 실험데이터를 자주 참조하자.
궁금증 ** 왜 weight의 합은 1이 아닐까??????????????
netflix prize research day 26
오늘 한일은 다음과같다
이를 위해서 오늘
TODO
각 유져와 무비 페어에 대해.
• N(i;u)를 구한다. 즉 u가 rating했던 아이템중 i와 비슷한 아이템 20개를 선정한다.(20이 안되는 경우는 assert걸어둔다.)
• 20 * 20 매트릭스 A, 20 * 1 벡터 b를 작성하고, 알고리즘을 이용하여 w를 구한다.
• 레이팅을 채운다..
- 통계프로그램을 구했으니 슬슬 자료 분석도 시작해 봐야지
netflix prize research day 5 & 6
<5일차의 삽질>
밤새 돌려놓았던 분류기가 이상하게 0바이트의 파일들을 만들어 내고 있었다.
새로운 그룹을 생성하였지만 사이즈가 그대로 0이 되어버리는 경우는?
->> 반지의 제왕! .. 그 누구라도 4점과 5점을 주었다. 따라서 1점 2점 3점의 그룹은 사이즈가 0인채로 기록된것이다.
< 삽질하나더>
hash_map<int, char*> 의 인스턴스가 newHash라고 할때,
newHash[3] = "dkfjld"
라고 쓰는것은 좋다. 그러나 값을 가져오기 위해서 newHash[3]을 사용해서는 안된다. 만약 3이라는 key값에 해당하는 value가 없을 경우에는 결국 키값이 3, 밸류가 0인 자료를 생성해서 대입하게 되기 때문이다.
<클러스터링>
클러스터링이란, 내가 생각해오던 대로 군집화시키는 알고리즘이었다.
wikipedia.org를 참고하여서 클러스터링 알고리즘을 이해하고 알고리즘을 노트에
순서대로 적어놓았다.
한가지 결정할 사항이 있다.
mysql에 모든 자료를 다 집어넣어놓고 작업을 해야 하는가?
아마도 그런 듯 하다. 왜냐하면 지금 파일에는 '영화'기반으로 자료가 들어가 있는데,
'유져'기반의 추천시스템인 collaborative filtering을 구현하기 위해서 나는 자료를 반드시 '유져'기반으로 갖고 있어야 하기 때문이다. 그렇다고 해서 코딩으로 이들을 모두 분류시키기는 또 무리인 것 같고.. 아구마 할일 많구만.
TODO
- mssql에 모든 데이터를 쑤셔 넣어 버리자!
- 통계프로그램을 구했으니 슬슬 자료 분석도 시작해 봐야지
- 2007년 1등한사람의 PDF를 종종 읽으며 연관기술을 습득하자.
- STL사용법을 삽질기에 적어놓도록 하자.