달력

1

« 2025/1 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
2008. 2. 4. 21:46

day 26 netflix prize/일지2008. 2. 4. 21:46

netflix prize research day 26

오늘 한일은 다음과같다

  • N(i; u)를 구했다. 즉, u가 rating했던 아이템중 i와 비슷한 아이템 20개를 선정한다.(20이 안되는 경우는 assert걸어둔다.)

이를 위해서 오늘

  • recommender.cpp작성
  • similarity_loader 모듈작성
  • matrix_loader 모듈작성
  • userdata_loader 모듈작성

TODO

각 유져와 무비 페어에 대해.
• N(i;u)를 구한다. 즉 u가 rating했던 아이템중 i와 비슷한 아이템 20개를 선정한다.(20이 안되는 경우는 assert걸어둔다.)
• 20 * 20 매트릭스 A, 20 * 1 벡터 b를 작성하고, 알고리즘을 이용하여 w를 구한다.
• 레이팅을 채운다..


  - 통계프로그램을 구했으니 슬슬 자료 분석도 시작해 봐야지

문제해결법에 대한 IDEA

*. 영화제목으로부터 연관관계를 끌어낼 수 있을까(시리즈물, 어두운 분위기, 공포 등)

 - WWE
 - soldier
 - Dark
 - dragon ball
 - national geographic
 - 영화제목에 위의 단어가 들어있다면. 이용자가 시리즈물을 보고 평가한 결고를 반영할 수 있다.
 - (user base + item base)
 - 자주 검색되는 단어를 이용해도 된다.
 
*. 시간적으로 '최근' 취향이 비슷할 수록 가중치가 높아진다.
 - user간에 얼마나 '많은' 영화의 평점이 얼마나 '많이'같은지, 그 각각의 영화가 얼마나 시기적으로 '가까운'지에
대하여 유사도를 계산한다..

=> 뭐 이딴것들은 다 논문에 나와있더라.. user-based approach와 item-based approach는 이미 다 나와있고... 상대적으로 item-based approach가 더 좋은 속도와 결과를 내지만,
나중에 데이터 짬뽕시키는게 적중률을 향상시키기에 시도는 했다 하더라.
:
Posted by Kwang-sung Jun